Power and Delay Comparison in between Different types of Full Adder Circuits
نویسندگان
چکیده
This paper describes the speed of the design is limited by size of the transistors, parasitic capacitance and delay in the critical path. Power consumption and speed are two important but conflicting design aspects; hence a better metric to evaluate circuit performance is power delay product (PDP).The driving capability of a full adder is very important, because, full adders are mostly used in cascade configuration, where the output of one provides the input for other. If the full adders lack driving capability then it requires additional buffer, which consequently increases the power dissipation. Here, we have given a brief description of the evolution of full adder circuits in terms of lesser power consumption, higher speed and lesser chip size. We have started with the most conventional 28 transistor full adder and then gradually studied full adders consisting of as less as 8 transistors. We have also included some of the most popular full adder cells like Static Energy Recovery Full Adder (SERF) [7] [8], Adder9A, Adder9B, GDI based full adder.
منابع مشابه
Imprecise Minority-Based Full Adder for Approximate Computing Using CNFETs
Nowadays, the portable multimedia electronic devices, which employ signal-processing modules, require power aware structures more than ever. For the applications associating with human senses, approximate arithmetic circuits can be considered to improve performance and power efficiency. On the other hand, scaling has led to some limitations in performance of nanoscale circuits. According...
متن کاملA High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube FET technology for use in arithmetic units
In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...
متن کاملA Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units
In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...
متن کاملHigh-Speed Ternary Half adder based on GNRFET
Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semiconductor behavior,are used to design the digital circuits. This paper presents a new design of ternary half a...
متن کاملTaguchi Approach and Response Surface Analysis for Design of a High-performance Single-walled Carbon Nanotube Bundle Interconnects in a Full Adder
In this study, it was attempted to design a high-performance single-walled carbon nanotube (SWCNT) bundle interconnects in a full adder. For this purpose, the circuit performance was investigated using simulation in HSPICE software and considering the technology of 32-nm. Next, the effects of geometric parameters including the diameter of a nanotube, distance between nanotubes in a bundle, and ...
متن کامل